Extensions 1→N→G→Q→1 with N=C22×Dic6 and Q=C2

Direct product G=N×Q with N=C22×Dic6 and Q=C2
dρLabelID
C23×Dic6192C2^3xDic6192,1510

Semidirect products G=N:Q with N=C22×Dic6 and Q=C2
extensionφ:Q→Out NdρLabelID
(C22×Dic6)⋊1C2 = (C22×S3)⋊Q8φ: C2/C1C2 ⊆ Out C22×Dic696(C2^2xDic6):1C2192,232
(C22×Dic6)⋊2C2 = Dic614D4φ: C2/C1C2 ⊆ Out C22×Dic696(C2^2xDic6):2C2192,297
(C22×Dic6)⋊3C2 = C232Dic6φ: C2/C1C2 ⊆ Out C22×Dic696(C2^2xDic6):3C2192,506
(C22×Dic6)⋊4C2 = C2×C427S3φ: C2/C1C2 ⊆ Out C22×Dic696(C2^2xDic6):4C2192,1035
(C22×Dic6)⋊5C2 = C2×Dic3.D4φ: C2/C1C2 ⊆ Out C22×Dic696(C2^2xDic6):5C2192,1040
(C22×Dic6)⋊6C2 = C2×C23.11D6φ: C2/C1C2 ⊆ Out C22×Dic696(C2^2xDic6):6C2192,1050
(C22×Dic6)⋊7C2 = C2×D6⋊Q8φ: C2/C1C2 ⊆ Out C22×Dic696(C2^2xDic6):7C2192,1067
(C22×Dic6)⋊8C2 = D4×Dic6φ: C2/C1C2 ⊆ Out C22×Dic696(C2^2xDic6):8C2192,1096
(C22×Dic6)⋊9C2 = Dic623D4φ: C2/C1C2 ⊆ Out C22×Dic696(C2^2xDic6):9C2192,1111
(C22×Dic6)⋊10C2 = C6.792- 1+4φ: C2/C1C2 ⊆ Out C22×Dic696(C2^2xDic6):10C2192,1207
(C22×Dic6)⋊11C2 = C22×C24⋊C2φ: C2/C1C2 ⊆ Out C22×Dic696(C2^2xDic6):11C2192,1298
(C22×Dic6)⋊12C2 = C2×C12.48D4φ: C2/C1C2 ⊆ Out C22×Dic696(C2^2xDic6):12C2192,1343
(C22×Dic6)⋊13C2 = Dic617D4φ: C2/C1C2 ⊆ Out C22×Dic696(C2^2xDic6):13C2192,599
(C22×Dic6)⋊14C2 = C2×C4.D12φ: C2/C1C2 ⊆ Out C22×Dic696(C2^2xDic6):14C2192,1068
(C22×Dic6)⋊15C2 = C42.92D6φ: C2/C1C2 ⊆ Out C22×Dic696(C2^2xDic6):15C2192,1085
(C22×Dic6)⋊16C2 = Dic619D4φ: C2/C1C2 ⊆ Out C22×Dic696(C2^2xDic6):16C2192,1157
(C22×Dic6)⋊17C2 = Dic621D4φ: C2/C1C2 ⊆ Out C22×Dic696(C2^2xDic6):17C2192,1191
(C22×Dic6)⋊18C2 = C2×C8.D6φ: C2/C1C2 ⊆ Out C22×Dic696(C2^2xDic6):18C2192,1306
(C22×Dic6)⋊19C2 = C22×D4.S3φ: C2/C1C2 ⊆ Out C22×Dic696(C2^2xDic6):19C2192,1353
(C22×Dic6)⋊20C2 = C2×C23.12D6φ: C2/C1C2 ⊆ Out C22×Dic696(C2^2xDic6):20C2192,1356
(C22×Dic6)⋊21C2 = C2×Q8.14D6φ: C2/C1C2 ⊆ Out C22×Dic696(C2^2xDic6):21C2192,1382
(C22×Dic6)⋊22C2 = C6.1052- 1+4φ: C2/C1C2 ⊆ Out C22×Dic696(C2^2xDic6):22C2192,1384
(C22×Dic6)⋊23C2 = C22×D42S3φ: C2/C1C2 ⊆ Out C22×Dic696(C2^2xDic6):23C2192,1515
(C22×Dic6)⋊24C2 = C22×S3×Q8φ: C2/C1C2 ⊆ Out C22×Dic696(C2^2xDic6):24C2192,1517
(C22×Dic6)⋊25C2 = C2×Q8○D12φ: C2/C1C2 ⊆ Out C22×Dic696(C2^2xDic6):25C2192,1522
(C22×Dic6)⋊26C2 = C22×C4○D12φ: trivial image96(C2^2xDic6):26C2192,1513

Non-split extensions G=N.Q with N=C22×Dic6 and Q=C2
extensionφ:Q→Out NdρLabelID
(C22×Dic6).1C2 = (C2×C12)⋊Q8φ: C2/C1C2 ⊆ Out C22×Dic6192(C2^2xDic6).1C2192,205
(C22×Dic6).2C2 = (C2×C4)⋊Dic6φ: C2/C1C2 ⊆ Out C22×Dic6192(C2^2xDic6).2C2192,215
(C22×Dic6).3C2 = Dic6.32D4φ: C2/C1C2 ⊆ Out C22×Dic696(C2^2xDic6).3C2192,298
(C22×Dic6).4C2 = (C2×Dic6)⋊7C4φ: C2/C1C2 ⊆ Out C22×Dic6192(C2^2xDic6).4C2192,488
(C22×Dic6).5C2 = (C2×Dic3)⋊Q8φ: C2/C1C2 ⊆ Out C22×Dic6192(C2^2xDic6).5C2192,538
(C22×Dic6).6C2 = C2×C2.Dic12φ: C2/C1C2 ⊆ Out C22×Dic6192(C2^2xDic6).6C2192,662
(C22×Dic6).7C2 = C2×C122Q8φ: C2/C1C2 ⊆ Out C22×Dic6192(C2^2xDic6).7C2192,1027
(C22×Dic6).8C2 = C2×C12⋊Q8φ: C2/C1C2 ⊆ Out C22×Dic6192(C2^2xDic6).8C2192,1056
(C22×Dic6).9C2 = C22×Dic12φ: C2/C1C2 ⊆ Out C22×Dic6192(C2^2xDic6).9C2192,1301
(C22×Dic6).10C2 = C2×C6.SD16φ: C2/C1C2 ⊆ Out C22×Dic6192(C2^2xDic6).10C2192,528
(C22×Dic6).11C2 = C4.(D6⋊C4)φ: C2/C1C2 ⊆ Out C22×Dic6192(C2^2xDic6).11C2192,532
(C22×Dic6).12C2 = C4⋊C4.237D6φ: C2/C1C2 ⊆ Out C22×Dic696(C2^2xDic6).12C2192,563
(C22×Dic6).13C2 = Dic6.37D4φ: C2/C1C2 ⊆ Out C22×Dic696(C2^2xDic6).13C2192,609
(C22×Dic6).14C2 = C23.51D12φ: C2/C1C2 ⊆ Out C22×Dic696(C2^2xDic6).14C2192,679
(C22×Dic6).15C2 = C2×C12.47D4φ: C2/C1C2 ⊆ Out C22×Dic696(C2^2xDic6).15C2192,695
(C22×Dic6).16C2 = C2×Dic6⋊C4φ: C2/C1C2 ⊆ Out C22×Dic6192(C2^2xDic6).16C2192,1055
(C22×Dic6).17C2 = C42.87D6φ: C2/C1C2 ⊆ Out C22×Dic696(C2^2xDic6).17C2192,1075
(C22×Dic6).18C2 = C22×C3⋊Q16φ: C2/C1C2 ⊆ Out C22×Dic6192(C2^2xDic6).18C2192,1368
(C22×Dic6).19C2 = C2×Dic3⋊Q8φ: C2/C1C2 ⊆ Out C22×Dic6192(C2^2xDic6).19C2192,1369
(C22×Dic6).20C2 = C2×C4×Dic6φ: trivial image192(C2^2xDic6).20C2192,1026

׿
×
𝔽