Extensions 1→N→G→Q→1 with N=C22xDic6 and Q=C2

Direct product G=NxQ with N=C22xDic6 and Q=C2
dρLabelID
C23xDic6192C2^3xDic6192,1510

Semidirect products G=N:Q with N=C22xDic6 and Q=C2
extensionφ:Q→Out NdρLabelID
(C22xDic6):1C2 = (C22xS3):Q8φ: C2/C1C2 ⊆ Out C22xDic696(C2^2xDic6):1C2192,232
(C22xDic6):2C2 = Dic6:14D4φ: C2/C1C2 ⊆ Out C22xDic696(C2^2xDic6):2C2192,297
(C22xDic6):3C2 = C23:2Dic6φ: C2/C1C2 ⊆ Out C22xDic696(C2^2xDic6):3C2192,506
(C22xDic6):4C2 = C2xC42:7S3φ: C2/C1C2 ⊆ Out C22xDic696(C2^2xDic6):4C2192,1035
(C22xDic6):5C2 = C2xDic3.D4φ: C2/C1C2 ⊆ Out C22xDic696(C2^2xDic6):5C2192,1040
(C22xDic6):6C2 = C2xC23.11D6φ: C2/C1C2 ⊆ Out C22xDic696(C2^2xDic6):6C2192,1050
(C22xDic6):7C2 = C2xD6:Q8φ: C2/C1C2 ⊆ Out C22xDic696(C2^2xDic6):7C2192,1067
(C22xDic6):8C2 = D4xDic6φ: C2/C1C2 ⊆ Out C22xDic696(C2^2xDic6):8C2192,1096
(C22xDic6):9C2 = Dic6:23D4φ: C2/C1C2 ⊆ Out C22xDic696(C2^2xDic6):9C2192,1111
(C22xDic6):10C2 = C6.792- 1+4φ: C2/C1C2 ⊆ Out C22xDic696(C2^2xDic6):10C2192,1207
(C22xDic6):11C2 = C22xC24:C2φ: C2/C1C2 ⊆ Out C22xDic696(C2^2xDic6):11C2192,1298
(C22xDic6):12C2 = C2xC12.48D4φ: C2/C1C2 ⊆ Out C22xDic696(C2^2xDic6):12C2192,1343
(C22xDic6):13C2 = Dic6:17D4φ: C2/C1C2 ⊆ Out C22xDic696(C2^2xDic6):13C2192,599
(C22xDic6):14C2 = C2xC4.D12φ: C2/C1C2 ⊆ Out C22xDic696(C2^2xDic6):14C2192,1068
(C22xDic6):15C2 = C42.92D6φ: C2/C1C2 ⊆ Out C22xDic696(C2^2xDic6):15C2192,1085
(C22xDic6):16C2 = Dic6:19D4φ: C2/C1C2 ⊆ Out C22xDic696(C2^2xDic6):16C2192,1157
(C22xDic6):17C2 = Dic6:21D4φ: C2/C1C2 ⊆ Out C22xDic696(C2^2xDic6):17C2192,1191
(C22xDic6):18C2 = C2xC8.D6φ: C2/C1C2 ⊆ Out C22xDic696(C2^2xDic6):18C2192,1306
(C22xDic6):19C2 = C22xD4.S3φ: C2/C1C2 ⊆ Out C22xDic696(C2^2xDic6):19C2192,1353
(C22xDic6):20C2 = C2xC23.12D6φ: C2/C1C2 ⊆ Out C22xDic696(C2^2xDic6):20C2192,1356
(C22xDic6):21C2 = C2xQ8.14D6φ: C2/C1C2 ⊆ Out C22xDic696(C2^2xDic6):21C2192,1382
(C22xDic6):22C2 = C6.1052- 1+4φ: C2/C1C2 ⊆ Out C22xDic696(C2^2xDic6):22C2192,1384
(C22xDic6):23C2 = C22xD4:2S3φ: C2/C1C2 ⊆ Out C22xDic696(C2^2xDic6):23C2192,1515
(C22xDic6):24C2 = C22xS3xQ8φ: C2/C1C2 ⊆ Out C22xDic696(C2^2xDic6):24C2192,1517
(C22xDic6):25C2 = C2xQ8oD12φ: C2/C1C2 ⊆ Out C22xDic696(C2^2xDic6):25C2192,1522
(C22xDic6):26C2 = C22xC4oD12φ: trivial image96(C2^2xDic6):26C2192,1513

Non-split extensions G=N.Q with N=C22xDic6 and Q=C2
extensionφ:Q→Out NdρLabelID
(C22xDic6).1C2 = (C2xC12):Q8φ: C2/C1C2 ⊆ Out C22xDic6192(C2^2xDic6).1C2192,205
(C22xDic6).2C2 = (C2xC4):Dic6φ: C2/C1C2 ⊆ Out C22xDic6192(C2^2xDic6).2C2192,215
(C22xDic6).3C2 = Dic6.32D4φ: C2/C1C2 ⊆ Out C22xDic696(C2^2xDic6).3C2192,298
(C22xDic6).4C2 = (C2xDic6):7C4φ: C2/C1C2 ⊆ Out C22xDic6192(C2^2xDic6).4C2192,488
(C22xDic6).5C2 = (C2xDic3):Q8φ: C2/C1C2 ⊆ Out C22xDic6192(C2^2xDic6).5C2192,538
(C22xDic6).6C2 = C2xC2.Dic12φ: C2/C1C2 ⊆ Out C22xDic6192(C2^2xDic6).6C2192,662
(C22xDic6).7C2 = C2xC12:2Q8φ: C2/C1C2 ⊆ Out C22xDic6192(C2^2xDic6).7C2192,1027
(C22xDic6).8C2 = C2xC12:Q8φ: C2/C1C2 ⊆ Out C22xDic6192(C2^2xDic6).8C2192,1056
(C22xDic6).9C2 = C22xDic12φ: C2/C1C2 ⊆ Out C22xDic6192(C2^2xDic6).9C2192,1301
(C22xDic6).10C2 = C2xC6.SD16φ: C2/C1C2 ⊆ Out C22xDic6192(C2^2xDic6).10C2192,528
(C22xDic6).11C2 = C4.(D6:C4)φ: C2/C1C2 ⊆ Out C22xDic6192(C2^2xDic6).11C2192,532
(C22xDic6).12C2 = C4:C4.237D6φ: C2/C1C2 ⊆ Out C22xDic696(C2^2xDic6).12C2192,563
(C22xDic6).13C2 = Dic6.37D4φ: C2/C1C2 ⊆ Out C22xDic696(C2^2xDic6).13C2192,609
(C22xDic6).14C2 = C23.51D12φ: C2/C1C2 ⊆ Out C22xDic696(C2^2xDic6).14C2192,679
(C22xDic6).15C2 = C2xC12.47D4φ: C2/C1C2 ⊆ Out C22xDic696(C2^2xDic6).15C2192,695
(C22xDic6).16C2 = C2xDic6:C4φ: C2/C1C2 ⊆ Out C22xDic6192(C2^2xDic6).16C2192,1055
(C22xDic6).17C2 = C42.87D6φ: C2/C1C2 ⊆ Out C22xDic696(C2^2xDic6).17C2192,1075
(C22xDic6).18C2 = C22xC3:Q16φ: C2/C1C2 ⊆ Out C22xDic6192(C2^2xDic6).18C2192,1368
(C22xDic6).19C2 = C2xDic3:Q8φ: C2/C1C2 ⊆ Out C22xDic6192(C2^2xDic6).19C2192,1369
(C22xDic6).20C2 = C2xC4xDic6φ: trivial image192(C2^2xDic6).20C2192,1026

׿
x
:
Z
F
o
wr
Q
<